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Abstract
Soil carbon is a critical factor in maintaining soil health and
combating climate change. Understanding and managing
soil carbon levels is essential for sustainable agriculture and
environmental protection. However, current methods for
measuring soil carbon are time-consuming and costly, hin-
dering efforts to monitor soil health and increase carbon
sequestration. In this paper, we propose Scarf, a novel soil
carbon sensing approach that combines widely accessible
radio frequency (RF) and optical signals to detect soil carbon
contents without dedicated hardware. Our key insight is that
soil carbon content closely correlates with two indicators:
the effective permittivity derived from RF signals and soil
lightness determined from soil surface images. We mathe-
matically model the correlations and leverage the non-linear
correlation between the two signal modalities to compute
soil carbon content. We employ machine learning to model
relationships that cannot be captured by traditional math-
ematical equations. Our experimental results indicate that
Scarf can achieve high soil carbon prediction accuracy that is
comparable to the state-of-the-art soil carbon sensing tech-
niques which cost US$1000s.

CCS Concepts
• Human-centered computing→ Ubiquitous and mo-
bile computing; • Computer systems organization →
Embedded and cyber-physical systems.

Keywords
Soil carbon, Sustainable agriculture, Wi-Fi, Smartphone im-
age, Machine Learning, Multi-modality
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1 Introduction
Over the past few decades, soil carbon has emerged as a crit-
ical focus for researchers and farmers, driven by its pivotal
role in climate change, soil health, and agricultural sustain-
ability. As part of the global carbon cycle (GCC), soil carbon
helps remove carbon dioxide (CO2) from the atmosphere
through a process known as carbon sequestration. During
this process, CO2 is first absorbed by plants through photo-
synthesis, followed by the transfer of a portion of the carbon
into soil through the decomposition of plant material. Soil
carbon is also crucial in fostering soil health since it is closely
correlated with the retention and use efficiency of water and
nutrients in soil [1]. Soil with higher carbon content can
hold more water and nutrients, thus leading to higher crop
productivity. Furthermore, the knowledge of soil carbon em-
powers farmers to adopt sustainable agriculture practices
that optimize resource efficiency, including water and fertil-
izer use, while simultaneously enhancing crop productivity
and environmental protection [2].
Traditional methods for measuring soil carbon are ex-

pensive and time-consuming. The standard method is dry
combustion [3, 4], which requires longer than one week of
time and can only measure a small volume of soil. Moreover,
it costs around US$20 per soil sample [5, 6] and therefore is
not suitable for monitoring small soil carbon changes over
large areas or over time. There are also in-situ methods such
as laser-induced spectroscopy [7, 8] and inelastic neutron
scattering [9]. However, these methods typically cost more
than US$10k [3]. There have been plenty of efforts in de-
veloping lower-cost soil carbon sensing systems utilizing
soil color and reflectance [10–16]. However, the trade-off for
reduced cost is often compromised accuracy in these sys-
tems. Additionally, these systems often require soil sample
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Table 1: Soil properties measured by recent RF-based sensing
techniques. Scarf is the only work measures soil carbon.

Method Soil property
GreenTag (RFID) [24] Moisture
Backscatter [18] Moisture
Smol (LoRa) [25] Moisture
LoRa [19] Moisture
CoMEt (USRP) [26] Moisture
LTE-Soil-Meter [20] Moisture
Strobe (Wi-Fi) [17] Moisture & EC
Scarf (this work) Carbon

preparation through air drying and sieving, which hinders
their ability to obtain rapid carbon measurements. To the
best of our knowledge, no existing system can fulfill the
combined requirements of accurate, inexpensive and rapid
determination of soil carbon. According to the soil scientists
we consulted, there is a significant demand for such systems.

In this paper, our goal is to develop a system that meets
all the requirements mentioned above. We propose to uti-
lize signals in RF and optical bands, i.e., Wi-Fi and images,
which are widely available on edge devices like smartphones
and drones, for soil carbon sensing. Our decision to employ
RF signals is inspired by recent research [17–20] demon-
strating that various RF signals, including Wi-Fi, RFID, LTE,
etc., can be used to detect soil permittivity. In addition, soil
studies have shown that soil carbon content influences soil
permittivity [21, 22]. Collectively, these insights suggest a
potential correlation between RF signals and soil carbon,
with soil permittivity as an intermediate variable. However,
a challenge here is that soil permittivity changes caused by
soil carbon and soil moisture are entangled. That means,
only measuring soil permittivity is inadequate to determine
soil carbon content, necessitating additional information. To
complement the RF data, we propose to utilize images, which
are easily accessible on smartphones and have been shown
to correlate with soil carbon content through color analy-
sis [10, 11, 23]. The traditional color-based carbon sensing
methods, however, rely on known soil moisture levels. They
require separately measuring soil moisture or air drying the
soil sample. Motivated by the aforementioned insights, we
design and implement Scarf, a system for Soil carbon sensing
using RF signals and images.

The major contributions of this work are as follows:

• We introduce Scarf, a novel soil carbon sensing technique
that enables low-cost, rapid and flexible soil carbon de-
tection with RF signals and images. This is the first work
to enable soil carbon sensing with commodity wireless
devices, whereas existing low-cost RF-based soil sensing
techniques only focus on soil moisture (as shown in Ta-
ble 1). As a proof-of-concept, we implement Scarf with

Table 2: Low-cost soil carbon sensing techniques. Scarf
achieves high accuracy without the need for sample dying.

Method Accuracy Sample Price
(𝑅2) drying (USD)

Chroma meters [10, 11] 0.53-0.79 Y 1000s
Digital camera [12] 0.88 Y 100s-1000s
Remote sensing [28, 29] 0.23-0.89 N depends
Spectrometers [14, 16] 0.73-0.78 Y 1000s
Reflectometer [15] 0.57 Y 350
Scarf (this work) 0.91 N 10s

commodity WARP hardware [27] and smartphone cam-
era without modification, demonstrating the possibility to
bring down the cost of soil carbon sensing to US$10s.

• We derive mathematical models to show that estimating
soil carbon from RF signals and images is theoretically fea-
sible because the impacts of soil carbon and soil moisture
on RF signals and images are non-linearly correlated. To
the best of our knowledge, this is the first work to demon-
strate the possibility of using a combination of RF signals
and images to sense soil carbon.

• Given the limitations of mathematical models in fully cap-
turing the complex relationships among soil carbon, mois-
ture, permittivity, and lightness, we incorporated a ma-
chine learning component. The resulting model can better
handle the complexities inherent in soil systems by com-
bining the strengths of both mathematical modeling and
machine learning.

• We tested Scarf with two soil types. Our evaluation results
show that Scarf’s approach of combining mathematical
computation with machine learning can help improve
the accuracy of mathematical models, even with small-
size datasets. For sand compost mixtures, it achieves a
high correlation of 96.3% and coefficient of determination
(𝑅2) of 0.911, which is comparable to the state-of-the-art
soil carbon sensing techniques using devices that cost
US$1000s [14, 16] (Table 2). For field soils, Scarf achieves
slightly worse performance with a correlation of 88.0%
and 𝑅2 of 0.417, due to the relatively small dataset and the
small range of carbon content.

2 Related Work
We discuss related work in the following three categories.
Low-cost soil carbon sensing. The efforts on low-cost
soil carbon sensing can be divided into two categories. (i)
Soil color-based methods leverage the relationship between
soil color and soil carbon. Soil color can be determined vi-
sually with Munsell color charts [23] or more accurately
with chroma meters [10, 11]. Recent studies demonstrate
the possibility of using digital cameras [12] and cameras on
mobile phones [13] to measure soil color. (ii) Reflectance-
based methods rely on the relationship between reflectance
spectra and soil organic carbon in the visible, near-infrared
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and shortwave infrared (400-2500 nm) regions [28, 30, 31].
To reduce the cost of soil carbon sensing, spectrometers
can be deployed on satellites, aircraft, and unmanned aerial
systems to provide large-scale and rapid soil carbon sens-
ing. These remote sensing systems, however, achieve lower
accuracy and suffer from weather conditions and soil condi-
tions such as vegetation cover, soil moisture and soil rough-
ness [28, 32]. Recent studies also look into portable devices
using low-cost spectrometers [14–16], which have limited
spectral ranges, for soil carbon determination. Compared
to more capable instruments, these simplified devices can
bring down the cost from ∼US$50,000 to US$100s-1000s. The
authors in [15] demonstrate a field portable reflectometer,
which costs US$350, but only achieves an accuracy of 0.57.

As shown in Table 2, for all these approaches, except re-
mote sensing, a key limitation is that soil samples require
drying and sieving before conducting measurements, leading
to extra time and labor effort. Although remote sensing does
not need sample preparation, its performance is not stable.
Scarf adopts two signal modalities to eliminate the need for
sample drying while achieving good accuracy.
Low-cost RF-based soil sensing. Recently, several novel
sensing techniques have been proposed to enable low-cost
and accurate soil moisture sensing using RF signals. In con-
trast to traditional RF-based sensing techniques such as
ground penetrating radar (GPR) [33] and Time Domain Re-
flectometery (TDR) [34], which requires expensive special-
ized hardware, the recent studies focus on low-cost commod-
ity wireless devices that bring down the cost from US$1000s
to under US$100. Strobe [17] proposes using Wi-Fi signals
for soil moisture and electrical conductivity (EC) sensing.
The authors in [18] use low-cost and low-energy backscat-
ter to sense soil moisture leveraging ultra-wideband signals.
GreenTag [24] leverages Differential Minimum Response
Threshold (DMRT) of two commodity RFID tags to detect
soil moisture of plant pots in a greenhouse. Recent work
also uses LoRa signals for soil moisture sensing [19, 25]. The
authors in [19] use the relative time-of-flight (ToF) between
two receive antennas to sense soil moisture. Smol [25] only
adopts received signal strength indicator (RSSI) informa-
tion, which limits the estimation accuracy. CoMEt [26] is a
non-invasive system with both the transmitter and receive
antenna array above the soil surface. LTE-Soil-Meter [20]
measures the relative ToF of two LTE receivers.

As shown in Table 1, most existing techniques only sense
soil moisture. Scarf is the only work to sense soil carbon. As
a proof-of-concept, this work chooses Wi-Fi signals to detect
soil permittivity. We believe Scarf’s mathematical models
are also applicable to other RF signals which can detects soil
permittivity [18–20, 26], e.g., LTE signals, after adapting the
operating frequency in the equations.

Application of machine learning in RF sensing. In re-
cent years, there have been rich applications of machine
learning techniques in RF sensing for human activities [35–
41], such as gesture recognition, fall detection, pose estima-
tion, etc. These systems typically adopt convolutional neural
network (CNN), more specifically, ResNet [42], to extract fea-
tures from RF data. This is because CNN has demonstrated
superior performance in human activity detection in im-
ages and videos while ResNet has its advantages of allowing
deeper neural architectures, making it possible to detectmore
complex patterns. Earlier systems mostly rely on supervised
learning architectures [36–38], which requires ground truth
labels provided by other signal modalities such as RGB data.
To reduce the laborious labeling efforts, several systems are
developed to utilize partially labeled datasets [35, 39] and
unsupervised learning architectures [40, 41]. Scarf draws
inspirations from these systems but differs in the utilization
of RGB data, which is combined with RF signals as the input
to the machine learning model.

3 Background
We first introduce the background of soil carbon and then
discuss soil carbon’s impact on permittivity and soil color.

3.1 Soil carbon primer
Soil carbon includes both inorganic and organic carbon. In-
organic carbon exists in mineral forms, primarily as calcium
carbonate, while organic carbon presents as soil organic
matter—a complex mixture of decomposed plant and ani-
mal residues. In this paper, we focus on soil organic carbon
given its greater responsiveness to agriculture practices [3].
Throughout the paper, we use soil carbon to refer to the
organic portion of soil carbon.
The standard method of measuring soil carbon is dry

combustion [3, 4]. It relies on laboratory analysis through
taking small-volume soil samples and oxidizing them at a
high temperature. These procedures are expensive and time-
consuming, thus not suitable formonitoring small soil carbon
changes in the field and creating soil carbon maps of large ar-
eas [29]. There have been several in-situ methods, including
spectroscopic methods and remote sensing, to provide faster,
cheaper, and more accurate carbon measurement. Spectro-
scopic methods leverage the spectral behavior of soil car-
bon, including near/mid-infrared spectroscopy (NIRS/MIRS),
laser-induced breakdown spectroscopy (LIBS) and inelastic
neutron scattering (INS). NIRS/MIRS detects carbon through
the infrared reflectance in the near/mid infrared region that
is affected by soil carbon [43]. LIBS uses laser beam to form
microplasma which emits light containing the spectral signa-
ture of carbon [7, 8]. INS is based on the gamma rays emitted
from the interaction of carbon nuclei and fast neutrons [9].
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Figure 1: Relationship between soil carbon, soil physical
properties, soil color and RF wave propagation.

The high cost of these methods (over US$10k [3]), however,
limits their adoption.

3.2 Soil carbon, soil color, and RF signals
Figure 1 illustrates the overall connection among soil car-
bon, soil color, and RF wave propagation in soil, interlinked
through a series of soil physical properties. Next, we intro-
duce the relationships in detail.

3.2.1 Relationship between soil carbon and soil color.
Soil organic carbon is one of the major pigments of soil
color. There has been a long history of using soil color to
determine soil carbon content. Traditionally, Munsell color
charts [23] have been used to determine soil carbon content.
Such a subjective method involves substantial errors. Recent
studies [10, 11] use chroma meters to get more accurate soil
color measurement. Statistically, there exists a negative re-
lationship between soil color and soil carbon content. That
is, the higher the carbon content, the darker the soil color.
However, to ensure the accuracy of soil color measurement,
the soil sample must be sieved, and its soil moisture needs to
be controlled because soil moisture also changes soil color.
Existing methods require either drying out or saturating the
soil sample before performing the color measurement. Be-
sides soil moisture, soil texture and iron oxides also influence
soil color. Their impacts need to be calibrated when using
soil color to determine carbon content.

3.2.2 Relationship between soil carbon and RF wave
propagation. The propagation of RF signals in soil depends
on the soil’s dielectric permittivity: it slows down in soil
because soil has a higher dielectric permittivity than air.
Soil’s dielectric permittivity, on the other hand, mostly de-
pends on the amount of water in the soil. Therefore, various
dielectric-based commodity soil sensors, including RF-based
approaches such as GPR [33] and TDR [34], measure soil
permittivity to estimate soil moisture.
Mapping permittivity to soil moisture. The mapping
from permittivity to moisture requires modeling permittiv-
ity as a function of soil properties. A widely adopted model-
ing approach is using mixing models which are empirically
derived as third-order functions of soil volumetric water
content (VWC), e.g., Topp’s equation [44]. The polynomial

coefficients in the functions need to be adapted for different
types of soils through extensive experimental data. These
models are widely adopted by commodity dielectric-based
soil moisture sensors to convert permittivity to VWC.

Another commonmodeling approach is using soil dielectric
mixing models, which consider soil texture and therefore can
be applied for different soil types. These models typically
involve the impacts of soil texture, wilting point, porosity,
VWC and radio frequency on permittivity [45, 46].
Soil dielectric mixing model. To help understand the
model, here we first explain the related soil properties.
• Dielectric permittivity is a material property that describes
a material’s ability to store electrical energy in an electric
field. Relative permittivity (unitless) refers to the ratio
of absolute dielectric permittivity to the free-space per-
mittivity. Effective permittivity, also known as apparent
permittivity, refers to the relative permittivity of the soil
mixture measured in-situ. For the rest of this paper, we use
permittivity to refer to effective permittivity for simplicity.

• Soil texture is the method to classify soil into different soil
types. It is expressed as the proportion of different-sized
soil particles, i.e., sand, silt and clay, where sand is the
largest and clay is the smallest.

• Porosity is the ratio of pore space in the total volume of
soil. It indicates the amount of water/air soil can hold.

• Bulk density is the dry soil weight divided by its volume.
It is inversely related to porosity.

• Wilting point is the soil water content below which plants
cannot extract water from soil.

• Transition moisture marks the point at which the relation-
ship between permittivity and VWC shifts from a gradual
to a rapid increase. This phenomenon is attributed to the
transformation of water from a bound to a free state within
the soil. Bound water is tightly bound to soil particles and
has a smaller dielectric permittivity than free water [45].
Existing literature has demonstrated a strong correlation
between transition moisture and wilting point [45, 47].
Therefore, the two terms are usually used interchangeably.
Considering these soil properties, the effective permittivity

of soil at different VWC levels can be described as a three-
phase equation [48] that has been validated to generalize for
different soil types and soil properties:

𝜖𝑒 =


(1 − 𝑝)𝜖𝑠 + (𝑝 −𝑤)𝜖𝑎 +𝑤𝜖𝑏 𝑤 ≤ 𝑤𝑤𝑝

(1 − 𝑝)𝜖𝑠 + (𝑝 −𝑤)𝜖𝑎
+𝑤

(
𝑝−𝑤

𝑝−𝑤𝑤𝑝
𝜖𝑏 + 𝑤−𝑤𝑤𝑝

𝑝−𝑤𝑤𝑝
𝜖𝑓

)
𝑤𝑤𝑝 < 𝑤 ≤ 𝑝

(1 −𝑤)𝜖𝑠 +𝑤𝜖𝑓 𝑤 > 𝑝

(1)

where 𝑝 is the porosity,𝑤 is the VWC,𝑤𝑤𝑝 is the VWC at
wilting point, 𝜖𝑠 , 𝜖𝑎 , 𝜖𝑏 and 𝜖𝑓 are the permittivity of soil, air,
bound water and free water, respectively. 𝜖𝑠 can be computed
from the volumetric ratios of sand, silt and clay, 𝑣𝑠𝑎𝑛𝑑 , 𝑣𝑠𝑖𝑙𝑡
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Figure 2: Design overview of Scarf. Two RF nodes collect CSI
and a smartphone collects soil surface image. The data is
sent to a server to determine carbon content with a method
combiningmathematical computation andmachine learning.

and 𝑣𝑐𝑙𝑎𝑦 , and their permittivity, 𝜖𝑠𝑎𝑛𝑑 , 𝜖𝑠𝑖𝑙𝑡 and 𝜖𝑐𝑙𝑎𝑦 , given
as: 𝜖𝑠 = 𝑣𝑠𝑎𝑛𝑑𝜖𝑠𝑎𝑛𝑑 + 𝑣𝑠𝑖𝑙𝑡𝜖𝑠𝑖𝑙𝑡 + 𝑣𝑐𝑙𝑎𝑦𝜖𝑐𝑙𝑎𝑦 .
Soil carbon’s impact onpermittivity. Soil carbon is closely
correlated with porosity, an important variable in the mixing
model (Eq. 1), and thus has a significant impact on permit-
tivity. Specifically, soils richer in carbon have lower bulk
density, higher porosity, higher wilting point and can hold
more water. These combined factors result in a lower soil
permittivity and, consequently, a faster propagation speed
of RF signals within the soil.
Soil carbon’s impact on permittivity affects the accuracy

of dielectric-based soil moisture sensors. Traditional soil
mixing models that map permittivity to VWC are mostly
developed for mineral soils with low carbon contents. Using
them for carbon-rich soils could introduce errors in the es-
timated VWC. To calibrate the impact of soil carbon, some
earlier studies suggest changing the polynomial coefficients
in the empirical mixing models [44, 49]. Recent work using
dielectric mixing models considers the impact of soil carbon
either implicitly by using different bulk densities for soils
with different carbon contents [21], or explicitly by including
soil carbon in the dielectric mixing model [22].

4 Design
In this section, we discuss the design of Scarf. As shown in
Figure 2, we use two RF nodes, one in the air as the transmit-
ter and another in the soil as the receiver to collect channel
state information (CSI) that correlates with soil properties.
Meanwhile, a smartphone camera takes pictures of the soil
surface to capture soil’s optical information. The collected
CSI and soil surface images are sent to an edge or cloud server
for further processing. We employ a hybrid approach com-
bining mathematical modeling and machine learning (ML) to
estimate soil carbon content. Initially, a mathematical model
leverages soil images and CSI to generate a preliminary car-
bon estimation. Recognizing the limitations of mathematical
models in fully capturing the complex relationships among

soil properties, we introduce anMLmodel to predict the error
between the initial estimate and ground truth. The predicted
error is then added back to the mathematical result to pro-
duce the final soil carbon estimation. Before training the ML
model, we perform necessary preprocessing on both CSI and
soil surface image. Due to the limited size of measurement
data, we also apply data augmentation to increase dataset
size. The ML model is trained on data containing a diverse
range of soil moisture and carbon content levels for each soil
type. Both the mathematical model and ML model require
soil texture information, which can be obtained from existing
soil database [50], or laboratory measurement. Scarf’s edge
to server communication can benefit from existing infras-
tructure for data-driven agriculture [51] to achieve reliable
and secure network connectivity.

4.1 Sensing soil carbon with RF signals and
soil surface images

We first explain and model the relationships between RF sig-
nals and soil carbon, and between soil images and soil carbon,
followed by discussing why a single signal modality does
not work. Then we use mathematical models to show that
two signal modalities are enough to determine soil carbon.

4.1.1 RF signals vs. soil carbon. Our idea of using RF
signals to detect soil carbon levels is inspired by two key
insights. First, existing work on soil dielectric mixing models
considers soil carbon’s impact on permittivity, with a goal
to calibrate out the impact and improve the accuracy of soil
moisture estimation. This indicates that, conversely, by lever-
aging the relationship between soil carbon and permittivity,
we can also infer soil carbon from permittivity. Second, re-
cent work [17–20] has demonstrated that RF signals from
low-cost devices, such as Wi-Fi chips, can measure soil per-
mittivity, enabled by the phenomenon that RF signals travel
slower in soil because it has a higher permittivity than air.
Modeling permittivity as a function of soil carbon and
moisture. We start with the three-phase equation (Eq. 1),
where the parameters can be divided into three groups. (i)
Parameters independent of soil carbon and soil moisture
include the permittivity of soil, air, bound water and free
water, 𝜖𝑠 , 𝜖𝑎 , 𝜖𝑏 , 𝜖𝑓 . These parameters can be considered as
constants during our measurements. 𝜖𝑠 depends solely on
soil texture/type and is a constant given a soil type. 𝜖𝑎 is usu-
ally set to 1. 𝜖𝑏 and 𝜖𝑓 are functions of operating frequency
and soil temperature. We apply equations in [22] to get 𝜖𝑏
and 𝜖𝑓 . (ii) Parameters dependent on soil carbon are wilting
point𝑤𝑤𝑝 and porosity 𝑝 . (iii) Soil volumetric water content
(VWC),𝑤 . For simplicity, we can rewrite Eq. 1 as:

𝜖𝑒 = 𝑓𝜖 (𝑤,𝑤𝑤𝑝 , 𝑝) (2)
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Figure 3: Simulation based on dielectric mixing model for
soils with 40% clay, 40% slit and 20% sand. Effective permit-
tivity (unitless) decreases as carbon level increases.

Existing work models𝑤𝑤𝑝 and 𝑝 empirically. We adopt a
linear model of wilting point [52], given as𝑤𝑤𝑝 = 0.0298 +
0.089𝑣𝑐𝑙𝑎𝑦 + 0.0136𝑜𝑐 , where 𝑣𝑐𝑙𝑎𝑦 is the volumetric ratio of
clay in soil and 𝑜𝑐 is the organic carbon content (%). The
equation’s parameters are determined using 12 soil types
and organic carbon contents. We use empirical models of
porosity 𝑝 and bulk density 𝐵𝐷 given in [22], which have
been evaluated with over 30 sites containing wide varieties of
soil types and carbon contents. 𝑝 is modeled as a non-linear
function of 𝑜𝑐 , 𝐵𝐷 , and volumetric ratios of clay and slit in
soil, 𝑣𝑐𝑙𝑎𝑦 and 𝑣𝑠𝑙𝑖𝑡 , written as 𝑝 = 𝑓𝑝 (𝑜𝑐, 𝐵𝐷, 𝑣𝑐𝑙𝑎𝑦, 𝑣𝑠𝑙𝑖𝑡 ). 𝐵𝐷
is negatively correlated with 𝑜𝑐: 𝐵𝐷 = −0.067𝑜𝑐 + 1.2301.
Given a soil type with known 𝑣𝑐𝑙𝑎𝑦 and 𝑣𝑠𝑙𝑖𝑡 , both𝑤𝑤𝑝 and
𝑝 are only functions of 𝑜𝑐 , written as 𝑤𝑤𝑝 = 𝑓𝑤𝑝 (𝑜𝑐) and
𝑝 = 𝑓𝑝 (𝑜𝑐). Hence, the permittivity in Eq. 2 is only a function
of𝑤 and 𝑜𝑐 , given as:

𝜖𝑒 = 𝑓𝜖 (𝑤, 𝑓𝑤𝑝 (𝑜𝑐), 𝑓𝑝 (𝑜𝑐)) = 𝑓𝜖 (𝑤,𝑜𝑐) (3)

To quantify the impact of soil carbon on effective permit-
tivity, we first perform simulation based on Eq. 3. Figure 3
plots the simulated permittivity at 2.4 GHz Wi-Fi frequency
band for soils with 40% clay, 40% slit and 20% sand, a composi-
tion used in our experiments. The results indicate that given
the same ground truth VWC, the permittivity decreases for
soils with higher carbon contents. This decrease is significant
enough to be observed when VWC falls in the range between
wilting point and saturation point, e.g., 20-40% VWC. We
have also experimentally validated this behavior, and the
results are discussed later in Section 6.1.2.

4.1.2 Soil surface images vs. soil carbon. Existing stud-
ies [11, 29] have shown that there is a negative relationship
between soil carbon and soil lightness, typically modeled
as a linear equation: 𝐿 = −𝑎𝑥 + 𝑏, where 𝐿 is the lightness
(unitless) in CIELAB color space, 𝑥 is the organic carbon
content 𝑜𝑐 or natural logarithm of 𝑜𝑐 , ln(𝑜𝑐), and 𝑎, 𝑏 > 0 are
constants. However, existing studies use chroma meters with
controlled light source and carefully prepared soil samples
which are fine-grained and have controlled VWC.

To demonstrate the possibility of using smartphone im-
ages to detect soil lightness change caused by soil carbon, we
collect soil surface images of soil boxes at different carbon
and moisture levels. These soil boxes are created with sand
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Figure 4: Lightness (unitless) of soil surface images. Light-
ness decreases as VWC and carbon content increase.

and compost manure for fine-grained control of soil carbon
content. Figure 4 plots the lightness computed from the soil
surface images after calibrating ISO, exposure time, and aper-
ture size of the smartphone camera. It indicates a negative
correlation between soil lightness and carbon content, con-
sistent with previous studies. Notably, the speed of lightness
decrease slows down at higher carbon content. Additionally,
lightness also decreases as VWC increases. The impact of
soil moisture on soil lightness has also been identified in
existing literature [53–55], while not explicitly modeled.
Modeling lightness as a function of soil carbon and
moisture. Based on the observations from Figure 4, we de-
rive the model of lightness as a function of 𝑜𝑐 and𝑤 :

𝐿 = −𝑎 ln(𝑜𝑐 + 1) + 𝑏 − 𝑐𝑤 (4)
where 𝑎, 𝑏, 𝑐 > 0 are constants. Here we adopt the loga-

rithm of 𝑜𝑐 because the decrease speed of lightness reduces
as 𝑜𝑐 increases. We choose ln(𝑜𝑐 + 1) instead of ln(𝑜𝑐) to
avoid large negative values of ln(𝑜𝑐) when 𝑜𝑐 is close to 0.
We determine 𝑎, 𝑏 and 𝑐 empirically. Given a set of mea-

sured𝑜𝑐 ,𝑤 , and𝐿 values, i.e.,𝑜𝑐1, 𝑜𝑐2, · · · , 𝑜𝑐𝑛 ,𝑤1,𝑤2, · · · ,𝑤𝑛 ,
and 𝐿1, 𝐿2, · · · , 𝐿𝑛 , we can compute 𝑎, 𝑏 and 𝑐 by solving the
following equation:


− ln(𝑜𝑐1 + 1) 1 −𝑤1
− ln(𝑜𝑐2 + 1) 1 −𝑤2

.

.

.
.
.
.

.

.

.

− ln(𝑜𝑐𝑛 + 1) 1 −𝑤𝑛

︸                             ︷︷                             ︸
𝐴


𝑎

𝑏

𝑐

︸︷︷︸
𝑥

=


𝐿1
𝐿2
.
.
.

𝐿𝑛

︸︷︷︸
𝐵

(5)

We can get 𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝐵.

4.1.3 A single signal modality is not enough. Figure 3
indicates that only knowing permittivity is not enough to
determine soil carbon content, because a permittivity value
can be mapped to different carbon values given different
VWC values. We need both permittivity and ground-truth
VWC to determine the carbon content. Similarly, as shown in
Figure 4, measuring soil lightness without knowing VWC is
not also enough to determine carbon content, since a single
lightness value can be mapped to different carbon values
given different VWC values. The challenge is that measuring
the VWC is very time-consuming. The ground truth oven



Cost-Effective Soil Carbon Sensing with Wi-Fi and Optical Signals ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

drying method takes 24 hours per sample. To achieve rapid
determination of soil carbon, we propose to combine RF
signals with soil surface images.

4.1.4 Combining the two signal modalities to deter-
mine soil carbon. We have identified that both permittivity
and soil lightness are functions of soil carbon and soil mois-
ture. A question here is: are the two signal modalities enough
to estimate soil carbon? This is equal to a mathematical prob-
lem: given 𝜖𝑒 and 𝐿 obtained from RF signals and soil surface
images, can we solve a system consists of Eq. 3 and Eq. 4,
where 𝑜𝑐 and𝑤 are the only two unknown variables?

We first show that in both equations, there are monotonic
relationships between 𝑜𝑐 and𝑤 . The monotonic relationship
in Eq. 4 is obvious: by fixing 𝐿 as a constant, 𝑤 ↑⇒ 𝑜𝑐 ↓.
For Eq. 3, we notice that its variables depending on soil
carbon, i.e., 𝑝 and 𝑤𝑤𝑝 , both increase monotonically over
𝑜𝑐 , as shown in Figure 5, based on our simulation for both
field soils and sand compost mixtures. With 𝜖𝑓 > 𝜖𝑏 > 𝜖𝑠 >

𝜖𝑎 as a known knowledge, we can derive the relationship
between 𝑜𝑐 and 𝑤 given a fixed 𝜖𝑒 by analyzing the three
phases in Eq. 1. (i) Phase 1: We can rewrite the equation
as 𝑤𝜖𝑏 + (𝜖𝑎 − 𝜖𝑠 )𝑝 + 𝐶 = 0, where 𝐶 is a constant. Since
(𝜖𝑎 − 𝜖𝑠 ) < 0, 𝑜𝑐 ↑⇒ 𝑝 ↑⇒ 𝑤 ↑. (ii) Phase 2: We can rewrite
the equation as𝑤 [𝑥 (𝜖𝑏 − 𝜖𝑓 ) + 𝜖𝑓 − 1] + (𝜖𝑎 − 𝜖𝑠 )𝑝 +𝐶 = 0,
where 𝑥 = (𝑝 −𝑤)/(𝑝 −𝑤𝑤𝑝 ) and (𝜖𝑏 − 𝜖𝑓 ) < 0. We have
𝑜𝑐 ↑⇒ 𝑝 ↑,𝑤𝑤𝑝 ↑⇒ 𝑥 ↑⇒ 𝑤 ↑. (iii) Phase 3: Here 𝜖𝑒 only
depends on𝑤 and increasing 𝑜𝑐 does not change𝑤 . Based
on the three-phase analysis, we can see that as 𝑜𝑐 increases,
𝑤 will first increase and then stay the same after𝑤 > 𝑝 .
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Figure 5: Simulation based on empirical models of porosity
and wilting point for soils containing 100% sand. Both pa-
rameters monotonically increase over soil carbon content.

Given the monotonic relationships between 𝑜𝑐 and𝑤 in
Eq. 3 and Eq. 4 and a pair of measured 𝐿 and 𝜖𝑒 , there exists
at most one pair of 𝑜𝑐 and 𝑤 that satisfies both equations.
Figure 6 plots an example of how to solve this problem. Given
a pair of 𝐿 and 𝜖𝑒 , the two equations can be plotted as two
non-parallel curves in the figure. The two curves have an
intersection that corresponds to the solution of 𝑜𝑐 and𝑤 .

To automate the search of the intersection, we formulate
an optimization problem.We combine Eq. 3 and Eq. 4 through
substitution to get an equation with a single unknown vari-
able: 𝜖𝑒 = 𝑓𝜖 ( [−𝑎𝐿𝑛(𝑜𝑐 + 1) +𝑏 −𝐿]/𝑐, 𝑜𝑐). The goal is to find
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Figure 6: Example of soil organic carbon content𝑜𝑐 andVWC
𝑤 computation based on mathematical models. Given a pair
of measured permittivity 𝜖 and soil lightness 𝐿, 𝑜𝑐 and𝑤 can
be determined from the intersection of the two functions.
The estimated 𝑜𝑐 and 𝑤 are 3.6 and 26.7, which align with
the ground truth 𝑜𝑐 and𝑤 of 3.0 and 23.4.

an 𝑜𝑐 that minimizes the following objective function:

𝑓𝑜𝑏 𝑗 =
��𝜖𝑒 − 𝑓𝜖 ( [−𝑎𝐿𝑛(𝑜𝑐 + 1) + 𝑏 − 𝐿]/𝑐, 𝑜𝑐)

�� (6)

where 𝜖𝑒 and 𝐿 are the measured effective permittivity
and soil lightness. After obtaining 𝑜𝑐 , the corresponding𝑤
can be determined from Eq. 4.

4.2 Data collection and calibration
Here we introduce how we leverage Wi-Fi signals to collect
CSI, and the necessary calibration for soil surface images.

4.2.1 CSI collection. Our goal is to capture CSI that con-
tains permittivity information of soil, and use it to generate
the input to the ML model. We adopt Strobe’s approach that
uses a single-antenna transmitter and a multi-antenna array
to get soil-dependent CSI [17]. Besides Strobe’s horizontal
placement of antennas (Figure 7(a)), we also support deploy-
ing the antennas vertically (Figure 7(b)).

(a) Horizontal (b) Vertical
Figure 7: Antenna deployment for CSI collection.

Practical use cases. The two antenna deployment methods
correspond to two use cases that do not introduce signifi-
cant deployment effort. (i) The horizontal deployment can be
used for long-term carbon monitoring with the underground
RF node remaining buried, which only requires a one-time
effort to dig up the soil and bury the antenna array. This is
helpful to monitor long-term carbon changes, e.g., carbon
loss after tillage, and carbon increase with carbon manage-
ment practices like no tillage and straw mulch coverage. (ii)
The vertical deployment makes Scarf portable for field mea-
surements at different locations. We can plug the antennas
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into soil in a similar way as commodity soil sensors, without
the need to digging up a large volumn of soil.
CSI vs. permittivity. In both setups, the relative time-of-
flight (ToF) of a signal propagating to two adjacent antennas
can be simplified to Δ𝑡 = 𝑛Δ𝑦/𝑐 , where Δ𝑦 is the distance
between antennas, 𝑐 is the speed of light, and 𝑛 is the re-
fractive index. 𝑛 can be related to the effective permittivity
𝜖𝑒 as 𝑛 =

√
𝜖𝑒 , so we have Δ𝑡 = Δ𝑦

√
𝜖𝑒/𝑐 . This relative ToF

corresponds to a phase rotation of −2𝜋 𝑓 Δ𝑡 , where 𝑓 is the
carrier frequency. In a multipath environment, CSI is the sum
of multiple paths, where only the shortest path contains the
phase rotation of interest. We first perform pre-processing
steps including noise reduction and ToF sanitization [56],
and then apply a multipath resolving technique, MUSIC [57],
to extract the shortest path and estimate 𝜖𝑒 .

4.2.2 Image calibration. The lightness of image depends
on scene luminance and camera settings. Prior work [58]
demonstrates that a digital camera can measure luminance
after calibrating camera settings including ISO, exposure
time and aperture area. A pixel’s digital number correlates
with the scene luminance and camera settings as follows:

𝑁 ∝ 𝑡𝑆𝐿𝑠/𝑓 2 (7)

where 𝑡 is the exposure time, 𝑆 is the ISO, 𝐿𝑠 is the scene
luminance, and 𝑓 is the aperture number. The settings of 𝑡 ,
𝑆 and 𝑓 are accessible from the metadata of images taken by
smartphones. We choose reference settings of 𝑡 , 𝑆 and 𝑓 , e.g.,
1/120, 100 and 1.8, and calibrate every image to the refer-
ence leveraging Eq. 7. Since we conduct experiments under
the same scene luminance, we do not explicitly calibrate 𝐿𝑠 .
When there is a change in scene luminance, we can calibrate
𝐿𝑠 by taking picture of a reference object, e.g., a white paper.
In addition to lighting conditions, a more comprehensive ap-
proach should also consider factors like camera makers and
models. Recent research [59] has demonstrated the potential
of deep learning-based image normalization for calibrating
these factors. We leave the investigation of advanced image
calibration techniques for future work.

4.2.3 Environmental variations. We consider four types
of variations. (i) Antenna misalignment. In real-world condi-
tions, it is hard to perfectly align the transmitter and receiver
antennas. To reduce the impact of misalignment, for each
soil sample, we collect multiple CSI samples by moving or
rotating the transmitter, and use them for the ML model
training and testing. (ii) Soil surface disruptions. These im-
pacts are reduced by falttening the soil surface and removing
objects on it before conducting measurements. (iii) Small-
scale spatial variations. Scarf measures the average VWC
over a path length of around 10cm in soil, which smooths
out small-area variations in VWC as well as the impact of
non-soil objects in soil [17, 19]. Similarly, we average soil

Figure 8: ML model overview. We first use the math model
to get an initial soil carbon estimation, and then use the ML
model to correct the error between the ground truth and the
math-computed output.

surface images accross a region. (iv) VWC Variations across
different locations and times. They are taken care of by our
mathematical models, which utilize CSI and image measured
at a location and time to estimate VWCwhile simultaneously
decoupling its influence on carbon estimation.

4.3 Applying ML to improve accuracy
The mathematical models discussed in Section 4.1 capture
the major relationships between soil carbon, moisture, per-
mittivity and lightness. However, they may have missed
some underlying relationships which introduce deviations
between mathematical results and the ground truth. To han-
dle the hidden relationships, we propose to apply ML.

Figure 8 shows an overview of theMLmodel design for im-
proving math-computed soil carbon. With a set of CSIs and
soil images, we first use them to compute soil permittivity
and soil lightness. The results are fed into the mathematical
model (Eq. 6) to perform an initial estimation of soil carbon
content, 𝑜𝑐 . We then generate the labels for the ML model
by subtracting 𝑜𝑐 from the ground truth 𝑜𝑐 obtained with
standard laboratory measurement. For the input to the ML
model, we consider an early fusion approach to combine the
two signal modalities before they enter the feature extrac-
tion network. It is noteworthy that there may exist a better
architecture to handle the multi-modal signals, we leave the
model architecture improvement for future work. For feature
extraction, we adopt one of the most popular convolutional
neural networks (CNNs), ResNet [42]. The feature extrac-
tion network takes the fused CSI and image data and labels
as input to predict the error between the math-computed
soil carbon content and the ground truth. In the end, the
predicted error is added back to the mathematical result to
produce the final soil carbon estimation.

4.3.1 Generating input to ML model. We perform pre-
processing and data augmentation for CSI and images.
CSI. The goal here is to generate input that retains infor-
mation as much as possible and can be interpreted by the
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ML model. A CSI sample is a matrix of complex numbers,
with a size of 3 × 330 in our experiments. We convert it to a
CSI image by plotting the CSI in the complex plane to keep
both phase and amplitude information. An alternative CSI
representation is the MUSIC spectrum presented as a rela-
tive ToF-absolute ToF heatmap. It is an intermediate result of
the signal processing algorithms in prior work [17, 56]. Our
experimental results indicate that its performance is similar
to the CSI image.
Soil surface images. We use a smartphone to take images
of soil surface for each carbon level and moisture level. The
original images have a size of 4032× 3024. In order to reduce
computation overhead and in the meantime capture enough
information, e.g., color and texture, we crop each image to
a size of 448 × 448 and then resize it with a factor of 0.5 to
create a 224× 224 RGB image. We choose size 224× 224 here
because it is a commonly adopted input image size for CNNs
such as ResNet [42].
Data augmentation. To reduce overfitting, we apply data
augmentation to both CSI and images to generate multiple
images for a soil surface. Data augmentation is a widely
adopted technique in computer vision to expand dataset size
and reduce overfitting. For CSI, we applied two methods for
data augmentation. First, we interpolate two measured CSI
samples to produce a new sample. Second, we add additive
white Gaussian noise (AWGN) and random relative phase
shift among antennas, which emulates the case where soil
has variations that lead to relative phase variations. For im-
ages, we first randomly rotate an image and then perform
cropping from a random region. Common approaches for
data augmentation in computer vision also include bright-
ness and color adjustments.We do not adopt them since these
are useful information correlated with soil carbon contents.

5 Implementation
Hardware.We implement Scarf’s CSI collection component
with WARP boards [27]. We connect the transmitter antenna
to one board and the receiver antenna array to another board
though cables. For both deployments in Figure 7, the WARP
boards are not buried. Practically, the horizontal deployment
requires the antenna array to remain buried. We expect to
replace its connected WARP board with a Wi-Fi chipset that
can be buried together with the array in the future. We sweep
the radio frequency across all available 2.4 GHz channels
to collect CSI of the entire available 70 MHz bandwidth at
2.4 GHz Wi-Fi spectrum. We perform the necessary calibra-
tion steps to remove phase offsets and distortions caused by
hardware impairments, same as those described in [17].
Software. We implement the mathematical models, CSI
and image pre-processing, and data augmentation in MAT-
LAB. To support data fusion of two signal modalities, we

Figure 9: Long-term experimental farm plots maintained at
different carbon contents.

(a) Soils from the field with 1-4% carbon contents.

(b) Sand compost mixtures, consisting of sand and com-
post manure, at 1-4%, 10%, 15% and 20% carbon contents.

Figure 10: Two soil types used for experiments.

implement a customized ResNet regression model with Py-
torch [60], a widely used deep learning library. Since we
have a relatively small dataset, we use SGD optimizer, a
small batch size of 16, and 14 ResNet layers. We use mean
squared error (MSE) as the loss function, which is effective to
improve 𝑅2 during training. All ResNet training and testing
runs on an NVIDIA GeForce RTX 4070 GPU.
Experimental setups. To test real soils, we use soils main-
tained in the field at different carbon contents (Figure 9) to
create four soil boxes with 1-4% carbon contents, as shown
in Figure 10(a). We label them as F1-F4. These soils consist of
40% clay, 40% silt and 20% sand. Since it is hard to precisely
control carbon contents in real soils, we also create sand
compost mixtures by mixing sand and compost manure. By
controlling the percentage of sand and compost manure, we
create boxes at 1-4%, 10%, 15% and 20% carbon contents, as
shown in Figure 10(b). We label these mixtures as M1-M20.

6 Evaluation
We first perform laboratory analysis of soil properties for
the field soils and sand compost mixtures used in our ex-
periments to get ground truth knowledge of soil carbon’s
impact on soil properties. We then evaluate the permittivity
measured by Scarf compared to commodity soil sensors to
validate that Scarf can detect soil carbon’s impact on permit-
tivity. Finally, we evaluate the performance of our mathemat-
ical model and MLmodel. Since the results for horizontal and
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Table 3: Laboratory results of soil carbon and bulk density for
field soils (F1-F4), sand, compost manure, and their mixtures
(M1-M4, M10, M15, M20).

Soil type Carbon (%) Bulk density (𝑀𝑔/𝑚3)

F1 1.35 1.038
F2 2.30 1.020
F3 3.15 1.016
F4 3.88 0.983

Sand 0 1.458
Compost manure 47.66 0.178

M1 1.54 1.043
M2 3.03 0.966
M3 4.25 0.893
M4 4.90 0.889
M10 14.14 0.792
M15 18.97 0.718
M20 31.58 0.601

vertical antenna deployments are similar, we mainly report
results for the horizontal deployment (Figure 7(a)).
Laboratory analysis of soil properties.We characterize
some important soil properties, which are used as ground
truths to demonstrate that the soil and sand compost mixture
boxes we created have different carbon contents, leading to
different bulk densities and water retention curves. We first
explain the methods we use to measure these properties.
For each of the measurements, we take 3 soil samples and
compute the average to get more accurate results.

• VWC. We first measure gravimetric water content (GWC)
with oven drying method, calculated as (weight of wet
soil - weight of dry soil) / (weight of dry soil), and then
multiply it by bulk density of soil to get VWC. For each
soil sample, we dry it in an oven at 105 °C for 24 hours.

• Soil organic carbon.We use the standard dry combustion
method [4] to measure it. We take 10-15 mg of 250-𝜇m
sieved soil samples in tin capsules and analyze them using
a Flash 2000 NC soil analyzer.

• Bulk density. We use the standard core method [61]. We
sample soil in a cylindrical core and then measure the soil
sample’s weight and VWC. Bulk density is calculated as
(weight of dry soil / the volume of the core).

• Water retention. We measure VWC at -33 to -1500 kPa
pressures with Pressure Plate Extractors [62]. A pressure
in the range of 10-33 kPa is used to determine the soil’s
water holding capability against gravity, while a pressure
of -1500 kPa is used to determine the wilting point.

Commodity soil sensors. To verify the drop of effective
permittivity over soil carbon, we compare Scarf against 2
commodity soil sensors, i.e., Meter TEROS 10 and Decagon
GS3. Meter TEROS 10 measures VWC and raw reading in mV,
which can be converted to effective permittivity using the
equation in its manual [63]. Decagon GS3 measures effective
permittivity, EC and temperature.

6.1 Microbenchmarks
6.1.1 Laboratory soil analysis results. We first look at
the ground truth soil properties.
Soil organic carbon and bulk density. We analyze the
soil organic carbon and bulk density for field soils, pure
sand, pure compost manure, and the mixtures of sand and
compost manure. The results are shown in Table 3. We create
the sand compost mixtures based on the carbon content of
pure compost manure and by controlling the relative weight
of sand and compost manure. As we can see, the measured
carbon contents of field soils are close to the expected values,
while the carbon contents of sand compost mixture boxes are
slightly higher than the expected values. A possible reason is
that the estimated carbon content for pure compost manure
is lower than its actual carbon content. This could happen
since we take small samples for carbon analysis and these
samples may be biased. We use these measured values for
the rest of the evaluation. In addition, we observe a negative
relationship between bulk density and carbon content, which
is consistent with the discussion in Section 4.1.1.
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Figure 11: Laboratory results of water retention curves for
sand compost mixtures (M1-M4, M10, M15, M20) (solid lines)
and field soils (F1-F4) (dashed lines).

Water retention curves. Figure 11 plots the water retention
curves. We observe two trends that meet our expectation.
First, field soils have higher VWC than sand compost mix-
tures. This is because the field soils contain 40% clay, which
helps retain more water. Second, given a pressure level, for
both soil types, VWC increases over carbon content. More-
over, the increase in wilting point (i.e., -1500 kPa) over carbon
content is consistent with our observation in Figure 5.

6.1.2 Soil carbon’s impact on RF signals. To verify RF
signals can detect permittivity changes over soil carbon con-
tent, we conduct experiments with soils containing different
carbon and moisture contents. We measure the top layer of
soil (0-10cm) where soil carbon is concentrated in practice.
We estimate permittivity from collected CSIs with MUSIC-
based data processing algorithm. For each soil box, we vary
the VWC by adding tap water and mixing water with soil
evenly. For each moisture level, we measure permittivity
with Scarf, Meter TEROS 10 and Decagon GS3. We use the
VWC measured by oven drying method as the ground truth.
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(d) Scarf vs. Decagon
Figure 12: Sand compost mixtures (1-20% carbon): permittivities measured by different devices show the same trends. Scarf
shows more variations than commodity soil sensors.
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(d) Scarf vs. Decagon
Figure 13: Field soils (1-4% carbon): Scarf’s results deviate more from the soil sensors than the sand compost mixture case.
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(b) Raw data
Figure 14: Lightness of field soils. Calibrated images show
that soil lightness decreases over VWC and carbon content.

Sand compost mixtures. Figure 12 plots the permittivity of
sand compost mixtures measured by different devices. For all
three devices, the general trends are the same: higher carbon
content results in lower permittivity under the same ground
truth VWC. We notice that Scarf has slightly higher varia-
tions. There are several possible reasons, e.g., multipath may
not be fully removed during data processing, and we might
have applied different amounts of force on the soil surface
during antenna deployment. Figure 12(d) shows permittivity
results obtained from Scarf exhibit a strong correlation with
those of acquired from the Decagon sensor. Similarly, Scarf’s
results also demonstrate a high correlation with the Meter
sensor. The correlation is 0.97 for Scarf and the Decagon
sensor, and 0.95 for Scarf and the Meter sensor.
Field soils. Figure 13 plots the permittivity of field soils mea-
sured by different devices. We notice that Meter and Decagon
can detect the permittivity decrease for F1-F2. However, the
curves of F2-F4 overlap more. This might be caused by the

close carbon contents between F2-F4, as shown in Table 3.
Similar to the case of sand compost mixtures, we also ob-
serve that Scarf’s results have more variations than theMeter
and Decagon sensors. Figure 13(d) shows the correlation of
permittivity results obtained from Scarf and the Decagon
sensor. Compared to sand compost mixtures, the correlation
here is slightly worse, which drops to 0.91.

6.1.3 Soil carbon’s impact on soil lightness. For sand
compost mixtures, we have discussed the trends of soil light-
ness’s decrease over soil carbon and moisture in Section 4.1.2
(Figure 4). For field soils, the lightness results of smartphone
images after calibrating camera settings are shown in Fig-
ure 14(a). The general trends are the same as those of sand
compost mixtures. However, the decrease in lightness over
soil carbon content is smaller for field soils, suggesting that
parameters in Eq. 4 need adjustment for different soil types.
By comparing Figure 14(a) and Figure 14(b), we can also see
the importance of image calibration, without which the light-
ness results of different soil carbon contents are overlapped
and do not decrease much over VWC.

6.2 Soil carbon sensing performance
Next, we evaluate the soil carbon sensing performance of
the mathematical model proposed in Section 4.1.4 and the
performance of the ML model described in Section 4.3.
Performance metrics.We use correlation coefficient, co-
efficient of determination, and mean squared error, which
are commonly used metrics, for evaluating model fitting
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performance. Correlation coefficient is defined as

𝑟 =
Σ𝑛𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√︁

Σ𝑛
𝑖=1 (𝑥𝑖 − 𝑥)2

√︁
Σ𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2

(8)

where𝑛 is the size of the testing dataset,𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛}
is the set of predicted carbon labels and 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑛} is
the set of ground truth carbon labels, 𝑥 and 𝑦 are the mean
values of 𝑋 and 𝑌 . The range of 𝑟 is [−1, 1]. Coefficient of de-
termination is defined as 𝑅2 = 1−Σ𝑛𝑖=1 (𝑦𝑖 −𝑥𝑖 )2/Σ𝑛𝑖=1 (𝑦𝑖 −𝑦)2

The range of 𝑅2 is (−∞, 1]. For both 𝑟 and 𝑅2, a value closer
to 1 represents a better performance. The mean squared error
is given as𝑀𝑆𝐸 = Σ𝑛𝑖=1 (𝑦𝑖 − 𝑥𝑖 )2/𝑛.
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Figure 15: Sand compost mixtures: carbon content and VWC
computed by mathematical model.
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Figure 16: Field soils: carbon content and VWC computed by
mathematical model.

6.2.1 Mathematical model. We collect CSI and soil sur-
face images of 7 sand compost mixture boxes each with 6
moisture levels, and 4 field soil boxes each with 6 moisture
levels. At each moisture level, we collect CSIs at 3-6 transmit-
ter locations by moving or rotating the transmitter, and av-
erage the estimated permittivity. We then get 42 data points
for sand compost mixtures and 24 data points for field soils.
We first use lightness estimated from soil surface images to
find parameters for Eq. 4. Then we use Eq. 6 to compute soil
carbon content and VWC. It is worth noting that we use
oven-based VWC𝑤 to estimate the constants in Eq. 4. Our
experimental results suggest that𝑤 can be replaced by VWC
estimated from RF signals without sacrificing performance,
simplifying the process of obtaining the lightness model.
Figure 15 and Figure 16 present the results computed by

the mathematical model for the two soil types. Both soils

have superior performance in VWC estimation. Sand com-
post mixtures have better correlation and 𝑅2 of carbon esti-
mation than the field soils because they have a larger dataset
and a larger range of carbon contents. With only 24 data
points tested for field soils, a single outlier can significantly
degrade the performance of correlation and 𝑅2. The MSE of
field soils, however, is much smaller than that of sand com-
post mixtures, meaning that the carbon estimation errors
of field soils are reasonably small. Overall, we can conclude
that the mathematical model is a good fit for our experi-
mental data, while some relationships leading to the carbon
estimation errors may not be fully captured.

6.2.2 ML model. Datasets. We experimentally collect 213
samples for the sand compost mixtures and 110 samples for
the field soils. We perform data augmentation on these sam-
ples as described in Section 4.3.1. After data augmentation,
we obtain 672 samples for the sand compost mixtures and
384 samples for the field soils. To avoid model overfitting, we
split training and testing datasets to ensure that the moisture
level and carbon content combination of all the testing sam-
ples have not been seen from the training dataset. We train
and test sand compost mixtures and field soils separately.

Table 4: Performance of soil carbon determination.
Soil type Model r 𝑅2 MSE

Sand
Math 0.896±0.044 0.784±0.105 20.788±14.297
ML 0.947±0.039 0.842±0.148 14.116±12.584
Math&ML 0.963±0.027 0.911±0.070 8.491±7.997

Field soil
Math 0.863±0.078 0.195±0.398 0.772±0.357
ML 0.431±0.341 0.179±0.265 0.736±0.238
Math&ML 0.880±0.063 0.417±0.269 0.523±0.242

Performance of leaving some moisture levels out.We
first test how the ML model performs when some moisture
levels are not seen during training. For sand compost mix-
tures, there are 42 different moisture levels of all boxes, from
which we randomly pick samples of 11 moisture levels to
create the testing dataset. For field soils, we pick 4 out of 24
moisture levels as the testing dataset. We also exclude these
samples from the parameter calculation in Eq. 5, so they are
unseen in the mathematical model. The results are averaged
over 5 random samplings of soil moisture levels. As shown
in Table 4, for both soil types, our proposed method of com-
bining mathematical model with ML can significant improve
the performance of only using a single model. We observe
that during the training process, the Math&ML model can
effectively reduce the training loss of predicting the error
between math-computed carbon and ground truth. The cor-
relation and 𝑅2 results of field soils appear to be worse than
sand compost mixtures because the field soils have a smaller
range of carbon content. Interestingly, the performance of
solely using the MLmodel is the worst for field soils, possibly
due to the limited dataset size. In contrast, the Math&ML
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model demonstrates superior performance with the same
dataset, emphasizing the value of integrating domain-specific
knowledge, i.e., the mathematical model, into ML training.
Horizontal vs. vertical antenna deployment. The re-
sults in Table 2 are based on the horizontal deployment
(Figure 7(a)). We have also collected data for the vertical
deployment (Figure 7(b)). Following the same data process-
ing procedures, the average 𝑟 , 𝑅2, and 𝑀𝑆𝐸 of the vertical
deployment are 0.967, 0.923, and 7.177, respectively, for sand
compost mixtures. The slightly better performance of the
vertical deployment could be because the environmental
noises are less when the antennas are all plugged into soil.

7 Discussion
Making Scarf more practical. Scarf is a proof-of-concept
design and implementation that necessitates invasive an-
tenna deployment to sense soil carbon, limiting its practical
applications. Transitioning it to a non-invasive system is
essential. However, a significant gap exists between the cost-
effectiveness and non-invasiveness of the RF-based tech-
niques given in Table 1. While it is feasible to develop a
non-invasive carbon sensing system by integrating a non-
invasive RF system like CoMEt [26] into Scarf, the high cost
of USRP hardware still hinders its adoption. In contrast, low-
cost methods often compromise on non-invasive operation.
Therefore, developing a low-cost, non-invasive system re-
mains a priority for future research.
Path towards smartphone sensing. Our end goal is to
sense soil carbon with smartphones. There exist two ma-
jor challenges. (i) CSI collection on smartphones. CSI is
generally unavailable in modern Wi-Fi chips. Earlier CSI
extraction tools [64, 65] are limited to outdated chipsets.
Nexmon [66, 67] supports more Wi-Fi devices, including
smartphones, but still requires firmware modification. A re-
cent work, BeamSense [68], enables CSI extraction using
beamforming reports and supports various 802.11-complient
Wi-Fi chips without firmware modification. The feasibility of
employing Nexmon and BeamSense for soil carbon sensing
will be explored in our future work. (ii) Image calibration.
The quality of soil surface images is affected by the distance
and rotation of the smartphone. Our future work will look
into designing a system capable of automatically calibrating
the positions utilizing a smartphone’s internal sensors, e.g.,
gyroscope and LIDAR. To account for the impact of lighting
conditions and camera models on measured soil lightness,
we will investigate advanced image calibration techniques,
e.g., the deep learning-based approach adopted in [59].
Evaluation for different soil types. We acknowledge that
more experimental data is required for a comprehensive
evaluation of our models. Especially, we need to adjust some
parameters in our models for different soil types. Moreover,

Scarf only considers farms soils without non-carbon color
pigments, and high levels of heavy metal and salt contami-
nation. These factors affect soil lightness, permittivity and
EC accordingly, and can be handled by updating the mathe-
matical models. To address the issue of limited dataset size
and difficulty of real-world data collection, we are actively
investigating transfer learning methods to benefit from ex-
isting datasets. Transfer Learning is advantageous for small
datasets due to its ability to leverage knowledge from a larger
dataset to improve the performance of a model trained on a
smaller target dataset [69]. E.g., we can adapt the ML model
trained on one soil type to another soil type. We have also
tested that our mathematical models are not sensitive to
small soil composition variations (<20%), indicating that we
only need to train models for coarse-grained soil types.
Improving feature extraction. In this work, we have only
tested two CSI representations, i.e., CSI image and MUSIC
spectrum. It is possible that other forms of representations
may outperform the performance we achieve. Additionally,
the feature extraction network we adopt has a lot of potential
to improve. We leave these improvements for future work.

8 Conclusion
This paper presents Scarf, a novel soil carbon sensing tech-
nique that leverages widely available RF signals and images,
eliminating the requirement for specialized hardware. To dis-
entangle the complex relationships between soil carbon, soil
permittivity, soil moisture, and soil color, we derive math-
ematical models to compute carbon content from soil per-
mittivity and lightness measured by RF signals and images.
We combine machine learning with the mathematical mod-
els to further improve performance. We have tested Scarf
with field soils and sand compost mixtures at various soil
carbon contents and moisture levels. Our results show that
Scarf can achieve high accuracy in predicting carbon con-
tents with the combined mathematical and machine learning
model. We believe Scarf is a significant step towards a low-
cost, rapid and accurate soil carbon sensor that can enable
farmers and researchers to monitor soil carbon content and
identify site-specific practices of sustainable agriculture.
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